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The Quantiles Problem

* We receive numbers (or comparable objects) arriving in a stream

 Answer queries about rank of x - how many items in the stream are less than x?
* Equivalent problem: What is the median of the stream? P-th percentile?

* Applications:
> |s this credit card transaction within this user’s normal spending habits?
> What’s the 99th percentile of latency on my network?
> |s this blood pressure reading an outlier for this patient?



The Quantiles Problem

» Stream consists of n items x;...x,

» Data structure to answer R(x) := | {x; : x; < x} |
» Not enough space to compute exactly, instead give an approximation R(x)
o Additive e-approximation: Pr[|R(x) — R(x)| <en]>1-6

 Goal: Low space complexity



Related Work

* Desirable quality: mergeable (parallel sketches can be merged)

e “Single quantiles” problem: approximation holds for one rank query
o “All quantiles” problem: approximation holds for ALL rank queries

Single quantile All quantiles Randomized Mergeable
MRL [3] (1/€) log?(en) (1/¢€) log?(en) No Yes
GK [5] (1/¢) log(en) (1/¢) log(en) No No
F’[I'}Jlli; paper] (1/¢€) log® log(1/46) (1/€) log? log(1/é¢) Yes Yes
KLL (1/¢) log log(1/6) (1/¢) log log(1/6¢) Yes No
[This paper]




Compactors

stream of k items - -y stream of k/?2 items



Compaction Algorithm

Wait for compactor to fill up

Sort the elements

Color the elements (even and odd)

Output red or blue elements 23,4, 7




Compaction Algorithm

Claim: For any x, after one compact operation, Rgream(*) = 2 - Reompact(®)

Formally: | Retreqm(x) — 2 - Reompact® | <1

x=6,R(x)=4 x =4, R(x) =3 x =4, R(x) =3

-23,1, 4, 5,7, 9 -23,1,4,5,7,9 -23,1,4,5,7,9

x=06,2-R(x)=4 x=4,2-R(x)=4 x=4,2-R(x)=2
-23, 4,7 -23, 4,7 1,5, 9



Compacting Compactors?

 If we chain two compactors together, we get an output of size n/4
* But the error blows up. Why?

 Each element in Compactor 1’s output stream “represents” two elements of original stream

* After Compactor 2, each element in final stream “represents” four elements of original stream

» If CompactX is the stream after x compactors, |Rgtream(*) — 2 - Rcompactx(®) | < 2°

* Fix: when analyzing multiple compactors chained together, assign each element a weight w
* Every time an element goes through a compactor, double its weight

» For every compact operation: | Rpefore(X) — 2+ Rafter(X) | < w



Naive Compactor Algorithm

« Each compactor can hold at most k elements (we will pick k later)
» Maintain a chain of H = [log(n/k)| compactors

« When compactor /i is full, it sends k/2 elements with doubled

weight to compactor i + 1 (Observe that the weight of elements
in compactor & is 271

« How do we answer queries?

K elements {



Naive Compactor Algorithm

To compute the rank of x:
 For each compactor, calculate how many elementsinitare < x

. Add each element’s weight (2"~1) to a running sum

» After all compactors are done, output the sum




Naive Compactor Algorithm

1. Letw, = 2"~1 be the weight of items that compactor & receives.

Then, the number of compactions it performs is at most m;, = n/kw,

2. Remember that the compaction operation of a compactor 4 can
introduce error at most w;, to any rank query. So the total error that

compactor A will introduce is m,w,.
3. The total error on a rank query across all compactors will be

H H
> mw, =) nlk =Hnlk <nlogn/k)/k
h=1 h=1

4. Since we have H compactors, the space used will be kH < klog(n/k).
5. Pick k = O(1/elog(en)) to get error en and space O(1/¢log?(en))




Contribution #1

Idea. The lower levels are too accurate - we can make
them smaller to save space without sacrificing error

» k; := Size of the buffer at height /

« We will set k;, & kH(2/3)H_h (rounding up to 2)




Contribution #1

Idea. The lower levels are too accurate - we can make
them smaller to save space without sacrificing error

» k; := Size of the buffer at height /

« We will set k;, & kH(2/3)H_h (rounding up to 2)

Theorem. For k = \/log(l/é)/e, the new algorithm
has error < en and space O(\/ log(1/0)/e Hlog(en)

We will have a lot of

compactors of size 2 at the
bottom... do we need them?




Contribution #1

The bottom H' compactors of size 2 are simulating sampling
an item from 2/’ of the stream. We don’t need compactors for

this - we can do it with a sampler in O(1) space.

After replacing H' compactors with a sampler, the space
taken by the remaining compactors is
H
Y k(2/3)7" < 3k = O(k) Sampler
h=H'+1
T

With a sampler, the algorithm achieves space O(y/log(1/6)/¢)

Input



Contribution #2

Observation. In the top log log 1/6 compactors, the

number of compaction operations are so few, worst-case
error occurs often.

¢
T

Input



Contribution #2

Observation. In the top log log 1/6 compactors, the

number of compaction operations are so few, worst-case
error occurs often.

Idea. Fix the size of the top log log 1/6 compactors to k.

1. We can analyze the error of the top compactors as a mini Naive
Compactor Algorithm!

2. The top compactors dominate the space complexity by using
O(kloglog 1/6), while the rest contribute O(k).

|
3. Setk = —loglog 1/5 to get space usage O((1/¢)log?log(1/6)) K'v'/
5




Contribution #3

We can improve the space complexity further by replacing

the top log log 1/6 compactors with a GK sketch, but we
sacrifice merge-abillity.

Theorem. There is an algorithm that computes an additive
g-approximation and uses space O((1/¢)loglog(1/0)).




KLL Is Optimal

Theorem. Any algorithm that computes rank within additive error €
with probability 1 — 6 must use space €2((1/¢)loglog(1/0)).

[Hung, Ting 2010]
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