
Jay Dharmadhikari

Optimal Quantile Approximation in Streams
Zohar Karnin, Kevin Lang, Edo Liberty

The Quantiles Problem
• We receive numbers (or comparable objects) arriving in a stream

• Answer queries about rank of - how many items in the stream are less than ?

• Equivalent problem: What is the median of the stream? P-th percentile?

• Applications:

‣ Is this credit card transaction within this user’s normal spending habits?

‣ What’s the 99th percentile of latency on my network?

‣ Is this blood pressure reading an outlier for this patient?

x x

• Stream consists of items

• Data structure to answer :=

• Not enough space to compute exactly, instead give an approximation

• Additive -approximation:

• Goal: Low space complexity

n x1 . . . xn

R(x) |{xi : xi ≤ x} |

R̃(x)

ε Pr[| R̃(x) − R(x) | ≤ εn] ≥ 1 − δ

The Quantiles Problem

Related Work
• Desirable quality: mergeable (parallel sketches can be merged)

• “Single quantiles” problem: approximation holds for one rank query

• “All quantiles” problem: approximation holds for ALL rank queries

Compactors

stream of itemsk stream of itemsk/2Compactor

Compaction Algorithm

1, 7, 5, -23, 4, 9Wait for compactor to fill up

-23, 1, 4, 5, 7, 9Sort the elements

-23, 1, 4, 5, 7, 9Color the elements (even and odd)

-23, 4, 7Output red or blue elements

Compaction Algorithm
Claim: For any , after one compact operation,

Formally:
x Rstream(x) ≈ 2 ⋅ Rcompact(x)

|Rstream(x) − 2 ⋅ Rcompact(x) | ≤ 1

-23, 1, 4, 5, 7, 9

-23, 4, 7

x = 6, R(x) = 4

x = 6, 2 ⋅ R(x) = 4

-23, 1, 4, 5, 7, 9

-23, 4, 7

x = 4, R(x) = 3

x = 4, 2 ⋅ R(x) = 4

-23, 1, 4, 5, 7, 9

1, 5, 9

x = 4, R(x) = 3

x = 4, 2 ⋅ R(x) = 2

Compacting Compactors?
• If we chain two compactors together, we get an output of size

• But the error blows up. Why?

• Each element in Compactor 1’s output stream “represents” two elements of original stream

• After Compactor 2, each element in final stream “represents” four elements of original stream

• If CompactX is the stream after compactors,

• Fix: when analyzing multiple compactors chained together, assign each element a weight

• Every time an element goes through a compactor, double its weight

• For every compact operation:

n/4

x |Rstream(x) − 2 ⋅ RCompactX(x) | ≤ 2x

w

|Rbefore(x) − 2 ⋅ Rafter(x) | ≤ w

Naive Compactor Algorithm

• Each compactor can hold at most elements (we will pick later)

• Maintain a chain of compactors

• When compactor is full, it sends elements with doubled
weight to compactor (Observe that the weight of elements
in compactor is)

• How do we answer queries?

k k

H = ⌈log(n/k)⌉

h k/2
h + 1

h 2h−1

H

H − 1

H − 2

3

2

h = 1

…

Input

{k elements

Naive Compactor Algorithm

To compute the rank of :

• For each compactor, calculate how many elements in it are

• Add each element’s weight () to a running sum

• After all compactors are done, output the sum

x

≤ x

2h−1

H

H − 1

H − 2

3

2

h = 1

…

Input

Naive Compactor Algorithm
1. Let be the weight of items that compactor receives.

Then, the number of compactions it performs is at most

2. Remember that the compaction operation of a compactor can
introduce error at most to any rank query. So the total error that
compactor will introduce is .

3. The total error on a rank query across all compactors will be

wh = 2h−1 h
mh = n/kwh

h
wh

h mhwh

H

H − 1

H − 2

3

2

h = 1

…

Input

H

∑
h=1

mhwh =
H

∑
h=1

n/k = Hn/k ≤ n log(n/k)/k

4. Since we have compactors, the space used will be .

5. Pick to get error and space

H kH ≤ k log(n/k)
k = O(1/ε log(εn)) εn O(1/ε log2(ϵn))

Contribution #1 H

H − 1

H − 2

3

2

h = 1

…

Input

Idea. The lower levels are too accurate - we can make
them smaller to save space without sacrificing error

• := Size of the buffer at height

• We will set (rounding up to 2)

kh h

kh ≈ kH(2/3)H−h

Contribution #1 H

H − 1

H − 2

3

2

h = 1

…

Input

Idea. The lower levels are too accurate - we can make
them smaller to save space without sacrificing error

• := Size of the buffer at height

• We will set (rounding up to 2)

kh h

kh ≈ kH(2/3)H−h

3
Theorem. For , the new algorithm

has error and space

k = log(1/δ) /ε
≤ εn O(log(1/δ) /ε + log(ϵn)) We will have a lot of

compactors of size 2 at the
bottom… do we need them?{

Contribution #1 H

H − 1

H − 2

…

Input

After replacing compactors with a sampler, the space
taken by the remaining compactors is

H′

H

∑
h=H′ +1

k(2/3)H−h ≤ 3k = O(k) Sampler

With a sampler, the algorithm achieves space O(log(1/δ) /ε)

The bottom compactors of size 2 are simulating sampling
an item from of the stream. We don’t need compactors for
this - we can do it with a sampler in space.

H′

2H′

O(1)

Contribution #2 H

H − 1

H − 2

…

Input

Observation. In the top compactors, the
number of compaction operations are so few, worst-case
error occurs often.

log log 1/δ

Sampler

Contribution #2 H

H − 1

H − 2

…

Input

Observation. In the top compactors, the
number of compaction operations are so few, worst-case
error occurs often.

log log 1/δ

Sampler

Idea. Fix the size of the top compactors to .

1. We can analyze the error of the top compactors as a mini Naive
Compactor Algorithm!

2. The top compactors dominate the space complexity by using
, while the rest contribute .

3. Set to get space usage

log log 1/δ k

O(k log log 1/δ) O(k)

k =
1
ε

log log 1/δ O((1/ε)log2 log(1/δ))🙂

Contribution #3 H

H − 1

H − 2

…

Input

Sampler

We can improve the space complexity further by replacing
the top compactors with a GK sketch, but we
sacrifice merge-ability.

Theorem. There is an algorithm that computes an additive
-approximation and uses space .

log log 1/δ

ε O((1/ε)log log(1/δ))

GK

KLL Is Optimal

Theorem. Any algorithm that computes rank within additive error
with probability must use space .

[Hung, Ting 2010]

ε
1 − δ Ω((1/ε)log log(1/δ))

References

[1] Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. Quantiles over data streams:
An experimental study. In *Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data*, SIGMOD ’13, pages 737–748, New York, NY,
USA, 2013. ACM.

[2] Michael B. Greenwald and Sanjeev Khanna. Quantiles and equidepth
histograms over streams. In J. Gehrke, M. Garofalakis, and R. Rastogi, editors, *In
Data Stream Management: Processing High-Speed Data Streams*. Springer, 2016.

[3] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random
sampling techniques for space-efficient online computation of order statistics of
large datasets. *SIGMOD Rec.*, 28(2):251–262, June 1999.

[4] J.I. Munro and M.S. Paterson. Selection and sorting with limited storage.
Theoretical Computer Science, 12(3):315–323, 1980.

[5] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of
quantile summaries. In *Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data*, SIGMOD ’01, pages 58–66, New York, NY,
USA, 2001. ACM.

[6] David Felber and Rafail Ostrovsky. A randomized online quantile summary in \(O((1/
ε)\log(1/ε))\) words. In *Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24–26,
2015, Princeton, NJ, USA*, pages 775–785, 2015.

[7] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei Wei,
and Ke Yi. Mergeable summaries. In *Proceedings of the 31st Symposium on
Principles of Database Systems*, PODS ’12, pages 23–34, New York, NY, USA, 2012.
ACM.

[8] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. Medians and beyond: New aggregation techniques for sensor networks. In
*Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems*, SenSys ’04, pages 239–249, New York, NY, USA, 2004. ACM.

[9] Andrej Brodnik, Alejandro Lopez-Ortiz, Venkatesh Raman, and Alfredo Viola.
*Space-Efficient Data Structures, Streams, and Algorithms: Papers in Honor of J. Ian
Munro, on the Occasion of His 66th Birthday*, volume 8066. Springer, 2013.

[10] Regant YS Hung and Hingfung F Ting. A \((1/ε)\log(1/ε) \) space lower bound for
finding ε-approximate quantiles in a data stream. In *Frontiers in Algorithmics*, pages
89–100. Springer, 2010.

