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The Quantiles Problem
• We receive numbers (or comparable objects) arriving in a stream


• Answer queries about rank of  - how many items in the stream are less than ?


• Equivalent problem: What is the median of the stream? P-th percentile?


• Applications: 

‣ Is this credit card transaction within this user’s normal spending habits?

‣ What’s the 99th percentile of latency on my network?

‣ Is this blood pressure reading an outlier for this patient?

x x



• Stream consists of  items 


• Data structure to answer  := 


• Not enough space to compute exactly, instead give an approximation 


• Additive -approximation:   


• Goal: Low space complexity

n x1 . . . xn

R(x) |{xi : xi ≤ x} |

R̃(x)

ε Pr[ | R̃(x) − R(x) | ≤ εn] ≥ 1 − δ

The Quantiles Problem



Related Work
• Desirable quality: mergeable (parallel sketches can be merged)

• “Single quantiles” problem: approximation holds for one rank query

• “All quantiles” problem: approximation holds for ALL rank queries



Compactors

stream of  itemsk stream of  itemsk/2Compactor



Compaction Algorithm

1, 7, 5, -23, 4, 9Wait for compactor to fill up

-23, 1, 4, 5, 7, 9Sort the elements

-23, 1, 4, 5, 7, 9Color the elements (even and odd)

-23, 4, 7Output red or blue elements



Compaction Algorithm
Claim: For any , after one compact operation, 


Formally: 
x Rstream(x) ≈ 2 ⋅ Rcompact(x)

|Rstream(x) − 2 ⋅ Rcompact(x) | ≤ 1
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Compacting Compactors?
• If we chain two compactors together, we get an output of size 


• But the error blows up. Why?


• Each element in Compactor 1’s output stream “represents” two elements of original stream


• After Compactor 2, each element in final stream “represents” four elements of original stream


• If CompactX is the stream after  compactors, 


• Fix: when analyzing multiple compactors chained together, assign each element a weight 


• Every time an element goes through a compactor, double its weight


• For every compact operation: 

n/4

x |Rstream(x) − 2 ⋅ RCompactX(x) | ≤ 2x

w

|Rbefore(x) − 2 ⋅ Rafter(x) | ≤ w



Naive Compactor Algorithm

• Each compactor can hold at most  elements (we will pick  later)


• Maintain a chain of  compactors


• When compactor  is full, it sends  elements with doubled 
weight to compactor  (Observe that the weight of elements 
in compactor  is )


• How do we answer queries?
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Naive Compactor Algorithm

To compute the rank of :


• For each compactor, calculate how many elements in it are 


• Add each element’s weight ( ) to a running sum


• After all compactors are done, output the sum
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Naive Compactor Algorithm
1. Let  be the weight of items that compactor  receives. 

Then, the number of compactions it performs is at most 


2. Remember that the compaction operation of a compactor  can 
introduce error at most  to any rank query. So the total error that 
compactor  will introduce is . 


3. The total error on a rank query across all compactors will be
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n/k = Hn/k ≤ n log(n/k)/k

4. Since we have  compactors, the space used will be .


5. Pick  to get error  and space 

H kH ≤ k log(n/k)
k = O(1/ε log(εn)) εn O(1/ε log2(ϵn))
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H − 1

H − 2

3

2

h = 1

…

Input

Idea. The lower levels are too accurate - we can make 
them smaller to save space without sacrificing error


•   := Size of the buffer at height 


• We will set  (rounding up to 2)

kh h

kh ≈ kH(2/3)H−h
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Idea. The lower levels are too accurate - we can make 
them smaller to save space without sacrificing error


•   := Size of the buffer at height 


• We will set  (rounding up to 2)

kh h

kh ≈ kH(2/3)H−h

3
Theorem. For , the new algorithm 

has error  and space 

k = log(1/δ) /ε
≤ εn O( log(1/δ) /ε + log(ϵn)) We will have a lot of 

compactors of size 2 at the 
bottom… do we need them?{
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After replacing  compactors with a sampler, the space 
taken by the remaining compactors is





H′￼

H

∑
h=H′￼+1

k(2/3)H−h ≤ 3k = O(k) Sampler

With a sampler, the algorithm achieves space O( log(1/δ) /ε)

The bottom  compactors of size 2 are simulating sampling 
an item from  of the stream. We don’t need compactors for 
this - we can do it with a sampler in  space. 
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2H′￼

O(1)



Contribution #2 H
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Observation. In the top  compactors, the 
number of compaction operations are so few, worst-case 
error occurs often. 

log log 1/δ

Sampler



Contribution #2 H
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Observation. In the top  compactors, the 
number of compaction operations are so few, worst-case 
error occurs often. 

log log 1/δ

Sampler

Idea. Fix the size of the top  compactors to .


1. We can analyze the error of the top compactors as a mini Naive 
Compactor Algorithm!


2. The top compactors dominate the space complexity by using 
, while the rest contribute .


3. Set  to get space usage 

log log 1/δ k

O(k log log 1/δ) O(k)

k =
1
ε

log log 1/δ O((1/ε)log2 log(1/δ))🙂



Contribution #3 H
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Sampler

We can improve the space complexity further by replacing 
the top  compactors with a GK sketch, but we 
sacrifice merge-ability. 


Theorem. There is an algorithm that computes an additive 
-approximation and uses space .

log log 1/δ

ε O((1/ε)log log(1/δ))

GK



KLL Is Optimal

Theorem. Any algorithm that computes rank within additive error  
with probability  must use space .


[Hung, Ting 2010]

ε
1 − δ Ω((1/ε)log log(1/δ))
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