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1 Introduction

The signed graph is an object that combines graph theory and social science to arrive at interesting con-
clusions. We assign each of a simple unweighted undirected graph with either a + or − sign, and we are
able to derive structural theorems based on these signs. From [CH56] we find that this simple addition can
model social situations of friendship and enmity. Imagine each vertex as a person, a + edge as a positive
relationship and a − edge as a negative relationship. A signed graph is balanced if the product of edge signs
along every cycle is positive, a notion that extends to balance in social situations.

In the following theorems, we observe the behavior of a signed graph as a complete social system.

2 Harary’s Theorems

A signed graph (G, σ) is a graph G = (V,E) with an assignment of signs σ : E → {−1,+1}. We call an
edge positive or negative if its sign is +1 or −1 respectively. The sign of a path is the product of the path’s
edges. By Harary [Har53] we get the following theorems.

Definition. A signed graph is balanced if every cycle in the graph has a positive sign.

Theorem 1. For every complete signed graph G = (Kn, σ), G is balanced if and only if there is a cut S, T
such that all internal edges S ↔ S, T ↔ T are positive and all cross edges S ↔ T edges are negative.

A social interpretation of this theorem is that a balanced social system consists of two tightly knit cliques
who oppose each other.
Proof.
→ Direction: Suppose G is balanced. Let v be an arbitrary vertex in G. Let X ⊆ V be the set of vertices
connected to v by a positive edge and v itself, and let Y be the set of all other vertices (i.e., vertices connected
to v by a negative edge since G is the complete graph.) It is clear that X,Y are disjoint and X ∪ Y = V .

Any pair of vertices x1, x2 ⊆ X must have a positive edge between them. If one of them is v, then this is
true by construction. Otherwise, there is a cycle v → x1 → x2 that must be positive since G is balanced.
Since (v, x1) and (v, x2) are positive by definition, it follows that (x1, x2) must be positive as well.

Any pair of vertices y1, y2 ⊆ Y must have a positive edge between them. Otherwise, there is a cycle
v → y1 → y2 that must be positive since G is balanced. Since (v, y1) and (v, y2) are negative by definition,
it follows that (y1, y2) must be positive. This satisfies the theorem.
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← Direction: Suppose there is a cut S, T that satisfies the theorem. Since any cycle must have an even
number of edges crossing the cut, the cycle will be positive.

Lemma 2. Every subgraph of a balanced signed graph is also balanced.

Proof. Every cycle in the subgraph corresponds to a cycle in the original graph, so it must be positive.

Theorem 3. A signed graph is balanced if and only if for all pairs of distinct vertices u, v all paths between
u and v have the same sign.

Proof.
→ Direction: Suppose G is balanced. Consider any two paths α1, α2 connecting u and v. Deleting the
common edges from α1 and α2 (if any) yields a collection of edge-disjoint cycles. Let z be an arbitrary cycle
from this collection. z is comprised of a subset of edges from α1 and a subset from α2. Since G is balanced,
z is a positive cycle, so the subsets α1 and α2 must have the same sign. Since each subset shares the same
sign, and the common edges are common to both paths, it follows that α1 and α2 must have the same sign.

← Direction: Suppose all paths between any pair of vertices u, v have the same sign. Then any cycle
containing u and v must be positive. Since u and v are arbitrary, all cycles must be positive.

We are now ready to extend Theorem 1 to general signed graphs.

Theorem 4. A signed graph is balanced if and only if there is a cut S, T such that all internal edges S ↔ S,
T ↔ T are positive and all cross edges S ↔ T edges are negative.

Proof.
→ Direction: Suppose G is balanced, and without loss of generality that G is connected. Let u, v be a pair
of vertices that are not connected by an edge. By Theorem 3, all paths between u and v must have the same
sign. If we add an edge (u, v) with this sign, all new cycles introduced are positive, and G remains balanced.
If we continue this process until G is the complete graph, the theorem follows from Theorem 1.

← Direction: Suppose a cut S, T exists. For each pair of vertices u, v that are not connected by an edge,
add a positive edge between them if they are both in S or both in T . Otherwise, add a negative edge. Once
G is the complete graph, the theorem follows from Theorem 1.

From Harary in [HK80] we also get a simple algorithm for testing balance.

Let G+ = (V,E+) be the subgraph containing only +1 edges
Find the connected components C1, C2, . . . , Ck of G+

foreach component Ci do
if there exists a -1 edge between two nodes in Ci then

Output Unbalanced; return
end

end
Construct graph H by collapsing each Ci into a single node and adding -1 edges between
components

Replace any multi-edges in H with a single edge
if H is bipartite then

Output Balanced
end
else

Output Unbalanced
end
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3 Random Signed Graphs

Now we explore a model of random signed graphs Gn,p,q that closely follows the Erdős–Rényi model. Let
p, q be fixed with 0 < p+q < 1. Given a set of n vertices, between each pair of distinct vertices x and y there
is either a positive edge with probability p or a negative edge with probability q, or else there is no edge at
all with probability 1− (p+ q). The edges between different pairs of vertices are chosen independently.

We present an alternate way to view Gn,p,q. Let G̃n,p,q be a random unsigned graph which has the same
probability distribution as the standard random graph Gn,p+q with edge probability p + q. We denote

E(G̃n,p,q) as this graph’s edge set. Then, for any fixed pair of vertices x, y assign:

P
(
{x, y} is positive in Gn,p,q|{x, y} ∈ E(G̃n,p,q)

)
=

p

p+ q

and
P
(
{x, y} is negative in Gn,p,q|{x, y} ∈ E(G̃n,p,q)

)
=

q

p+ q

In other words, Gn,p,q can be considered as the random variable on the set of the signed graphs on n vertices
whose probability distribution is given by

P(Gn,p,q = G) = pmqk(1− p− q)(
n
2)−m−k

where G is a signed graph with m positive edges and k negative edges.
From [MMM12] we get the following theorem.

Theorem 5. Let p, q be fixed with 0 < p+ q < 1. Then Gn,p,q is unbalanced with high probability.

First, we will prove the following useful lemma.

Lemma 6. Let H be a fixed set of h distinct pairs of vertices of Gn,p,q. Then

P
(
H is positive in Gn,p,q | H ⊆ E(G̃n,p,q)

)
=

1

2

[
1 +

(
p− q

p+ q

)h
]

and

P
(
H is negative in Gn,p,q | H ⊆ E(G̃n,p,q)

)
=

1

2

[
1−

(
p− q

p+ q

)h
]

Proof. Let
p1 = P(H is positive in Gn,p,q|H ⊆ E(G̃n,p,q))

=
∑
i even

P(|H−| = i)

where |H−| is the number of negative edges in H. Then,

p1 =
1

(p+ q)h

∑
i even

(
h

i

)
qiph−i

Similarly, let

p2 = P(H is negative in Gn,p,q|H ⊆ E(G̃n,p,q)) =
1

(p+ q)h

∑
i odd

(
h

i

)
qiph−i

Then we get the following system of equations:p1 + p2 = 1

p1 − p2 =
[
p−q
p+q

]h
Solving the system completes the proof of the theorem.
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Now we are ready to prove Theorem 5. Let T denote a maximum set of edge-disjoint triangles in the complete
graph Kn. To prove the theorem, we will show that Gn,p,q contains a negative triangle from T with high
probability.

It is clear that |T | ≥
⌊
n
3

⌋
. Let T be a fixed element of T . We have

P
(
T ⊆ G̃n,p,q and T is negative

)
= P

(
T is negative | T ⊆ G̃n,p,q

)
× P

(
T ⊆ G̃n,p,q

)
Using Theorem 6, we get

P
(
T ⊆ E(G̃n,p,q) and T is negative

)
=

1

2

[
1−

(
p− q

p+ q

)3
]
(p+ q)3

=
1

2

[
(p+ q)3 − (p− q)3

]
Thus, the probability that Gn,p,q contains a negative triangle from T is at least

1−
(
1− 1

2

[
(p+ q)3 − (p− q)3

])⌊n
3 ⌋

Since p and q are fixed, this expression tends to 1 as n→∞.

We can interpret this theorem to say that balance in social systems is very rare as the number of people
grows without any predefined social structure.
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