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1 Introduction

The signed graph is an object that combines graph theory and social science to arrive at interesting con-
clusions. We assign each of a simple unweighted undirected graph with either a + or — sign, and we are
able to derive structural theorems based on these signs. From [CH56] we find that this simple addition can
model social situations of friendship and enmity. Imagine each vertex as a person, a + edge as a positive
relationship and a — edge as a negative relationship. A signed graph is balanced if the product of edge signs
along every cycle is positive, a notion that extends to balance in social situations.
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balanced: everyone happy unbalanced: love triangle balanced: common enemy unbalanced: no alliances

In the following theorems, we observe the behavior of a signed graph as a complete social system.

2 Harary’s Theorems

A signed graph (G, o) is a graph G = (V, E) with an assignment of signs o : E — {—1,+1}. We call an
edge positive or negative if its sign is +1 or —1 respectively. The sign of a path is the product of the path’s
edges. By Harary [Har53] we get the following theorems.

Definition. A signed graph is balanced if every cycle in the graph has a positive sign.

Theorem 1. For every complete signed graph G = (K,,0), G is balanced if and only if there is a cut S, T
such that all internal edges S < S, T < T are positive and all cross edges S <> T edges are negative.

A social interpretation of this theorem is that a balanced social system consists of two tightly knit cliques
who oppose each other.

Proof.

— Direction: Suppose G is balanced. Let v be an arbitrary vertex in G. Let X C V be the set of vertices
connected to v by a positive edge and v itself, and let Y be the set of all other vertices (i.e., vertices connected
to v by a negative edge since G is the complete graph.) It is clear that X, Y are disjoint and X UY = V.

Any pair of vertices 1,22 C X must have a positive edge between them. If one of them is v, then this is
true by construction. Otherwise, there is a cycle v — x1 — xo that must be positive since G is balanced.
Since (v,21) and (v, z2) are positive by definition, it follows that (1, x2) must be positive as well.

Any pair of vertices y1,2 C Y must have a positive edge between them. Otherwise, there is a cycle
v — Y1 — yo that must be positive since G is balanced. Since (v,y1) and (v, y2) are negative by definition,
it follows that (yi,y2) must be positive. This satisfies the theorem.



+ Direction: Suppose there is a cut S, T that satisfies the theorem. Since any cycle must have an even
number of edges crossing the cut, the cycle will be positive. O

Lemma 2. FEvery subgraph of a balanced signed graph is also balanced.
Proof. Every cycle in the subgraph corresponds to a cycle in the original graph, so it must be positive. [

Theorem 3. A signed graph is balanced if and only if for all pairs of distinct vertices u,v all paths between
u and v have the same sign.

Proof.

— Direction: Suppose G is balanced. Consider any two paths «j,as connecting u and v. Deleting the
common edges from «; and as (if any) yields a collection of edge-disjoint cycles. Let z be an arbitrary cycle
from this collection. z is comprised of a subset of edges from «; and a subset from as. Since G is balanced,
z is a positive cycle, so the subsets a; and as must have the same sign. Since each subset shares the same
sign, and the common edges are common to both paths, it follows that a; and a; must have the same sign.

< Direction: Suppose all paths between any pair of vertices u,v have the same sign. Then any cycle
containing v and v must be positive. Since u and v are arbitrary, all cycles must be positive. O

We are now ready to extend Theorem 1 to general signed graphs.

Theorem 4. A signed graph is balanced if and only if there is a cut S, T such that all internal edges S < S,
T < T are positive and all cross edges S <> T edges are negative.

Proof.

— Direction: Suppose G is balanced, and without loss of generality that G is connected. Let w,v be a pair
of vertices that are not connected by an edge. By Theorem 3, all paths between u and v must have the same
sign. If we add an edge (u,v) with this sign, all new cycles introduced are positive, and G remains balanced.
If we continue this process until G is the complete graph, the theorem follows from Theorem 1.

< Direction: Suppose a cut S,T exists. For each pair of vertices u,v that are not connected by an edge,

add a positive edge between them if they are both in S or both in T'. Otherwise, add a negative edge. Once
G is the complete graph, the theorem follows from Theorem 1. O

From Harary in [HK80] we also get a simple algorithm for testing balance.

Let Gt = (V, E1) be the subgraph containing only +1 edges
Find the connected components C;,Cs,...,Ci of G
foreach component C; do
if there exists a -1 edge between two nodes in C; then
‘ Output Unbalanced; return
end
end
Construct graph H by collapsing each C; into a single node and adding -1 edges between
components
Replace any multi-edges in H with a single edge
if H is bipartite then
‘ Output Balanced
end
else
‘ Output Unbalanced
end




3 Random Signed Graphs

Now we explore a model of random signed graphs G, ;4 that closely follows the Erdés—Rényi model. Let
P, q be fixed with 0 < p+¢ < 1. Given a set of n vertices, between each pair of distinct vertices x and y there
is either a positive edge with probability p or a negative edge with probability g, or else there is no edge at
all with probability 1 — (p + ¢). The edges between different pairs of vertices are chosen independently.

We present an alternate way to view G, 4. Let Gy be a random unsigned graph which has the same
probability distribution as the standard random graph G, ,i, with edge probability p + g. We denote
E(Gp,p,q) as this graph’s edge set. Then, for any fixed pair of vertices z,y assign:

P ({x,y} is positive in G, p 4|{z,y} € E(én%q)) S
p+q
and )
P ({x,y} is negative in Gy, p q|{z,y} € E(Gn’p’q)) = %
pTq

In other words, G, ¢ can be considered as the random variable on the set of the signed graphs on n vertices
whose probability distribution is given by

P(Grpg = G) = p"g* (1 —p— q)Z)-mF

where G is a signed graph with m positive edges and k£ negative edges.
From [MMM12] we get the following theorem.

Theorem 5. Let p,q be fized with 0 < p+q < 1. Then Gy, p 4 s unbalanced with high probability.
First, we will prove the following useful lemma.

Lemma 6. Let H be a fized set of h distinct pairs of vertices of G, p 4. Then

h
N 1 _
P (H is positive in Gy pq | H C E(G,L7p7q)) =3 1+ (M)
and .
) o = 1 pP—4q
P ( H is negative in Gppq | HC E(Grypgq)) = 3 1-— o
pTq
Proof. Let

p1 = P(H is positive in Gy, p g H C E(Grpy))

=Y PIH|=1i)

7 even

where |H ™| is the number of negative edges in H. Then,

ne p+qh Z()

1 even

Similarly, let

pa = P(H is negative in G, po|H C E(Grpy)) = ( >
o . p+ q h z%d

Then we get the following system of equations:

p1+p2 =1

- [s=]

Solving the system completes the proof of the theorem. O



Now we are ready to prove Theorem 5. Let 7 denote a maximum set of edge-disjoint triangles in the complete
graph K,,. To prove the theorem, we will show that G, ,, contains a negative triangle from 7 with high
probability.
It is clear that |T| > |%]. Let T be a fixed element of 7. We have

P (T c G‘n’p’q and T is negative) =P (T is negative | T' C C;'n’p’q) x P (T c én,p,q)

Using Theorem 6, we get

) . . 1 p—q\° 3
C 2" \p+g
P (T C E(Gnyp,q) and T'is negamve) 2 [1 (p + q) b+
1 3 3
:5[(p+Q) *(P*Q)]

Thus, the probability that G, , , contains a negative triangle from 7 is at least

|5]
1- (1 - % [(p+4q)® - (pq)3]>

Since p and ¢ are fixed, this expression tends to 1 as n — oo. O

We can interpret this theorem to say that balance in social systems is very rare as the number of people
grows without any predefined social structure.
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