
Efficiently Sampling Spanning Trees

Jay Dharmadhikari

April 2025

1 Introduction

Sampling from complex distributions is at the heart of many problem-solving approaches in combinatorics
and optimization. A common distribution is the set of all spanning trees on a connected graph, and a number
of algorithms exist for constructing a uniform random sample efficiently. Some applications are:

• Evaluating the reliability of networks by generating random routing patterns and stress-testing them

• Sampling random Euler paths that have applications in genome sequencing and data analysis

• Generating well-formed random mazes

Our goal is to walk through some helpful ideas and algorithms.

2 Random Edge-Weight MST

A project for University of Washington CSE 373 (Data Structures and Algorithms) asks students to generate
a maze by the following method:

1. Create ”rooms” and ”walls” on a grid.

2. Assign each room to a vertex and each line (i.e. the border between two rooms) to an edge.

3. Assign each edge a random weight and run a minimum spanning tree algorithm.

Figure 1: Visualizing a maze created with a random edge-weight MST.

The resulting minimum spanning tree can be converted into a maze by deleting the walls corresponding to
the edges that remain. This creates a well-formed maze because there is exactly one path from the top left
corner to the bottom right, there are no unreachable rooms, and has an appropriate complexity due to its
randomness. While this method is simple enough to be a coding exercise for a class project and produces

1

visually appealing results, it is unfortunately not a uniformly random sample of all possible spanning trees
of a graph. The following example illustrates why.

Suppose we have a graph with four vertices connected by five edges consisting of a square and diagonal.
Then, the resulting graph has eight possible spanning trees, so we would expect that any one of them could
be chosen with probability 1/8. However, this is not true for the random edge-weight MST method. Observe

Figure 2: The eight possible spanning trees of the square-and-diagonal graph.

that there are four spanning trees that include the diagonal and four otherwise. If we consider the random
edge weights as creating a random permutation of the edges, then there are five equally likely cases for the
diagonal edge:

1. The diagonal is first in the order (assigned the lowest weight randomly.) In this case, the diagonal is
guaranteed to be included in the generated spanning tree.

2. The diagonal is second. In this case, the diagonal is still guaranteed to be included in the generated
spanning tree.

3. The diagonal is third. Whether the diagonal is included in the spanning tree depends on the edge
on the two edges that are before it. If it will create a cycle with the first two edges, then it will not
be included. There are

(
4
2

)
= 6 different choices for the first two edges, and 2 of them result in the

diagonal not being included. Thus, the probability that the diagonal is in the MST given that it is
third in the random ordering is 2/3.

4. The diagonal is fourth. It is guaranteed to not be in the MST.

5. The diagonal is fifth. it is not in the MST.

Since each of the cases is equally likely, we get that

P(diagonal in MST) =
1

5
+

1

5
+

2

3
· 1
5
=

8

15

Even though half of the possible spanning trees contain a diagonal, the random edge-weight MST will pick
a spanning tree with a diagonal more than half the time. While simple and intuitive, this method does not
sample a uniformly random spanning tree. However, there is some work on how the resulting distribution
behaves; [Gol19] characterizes the separation between the random MST and the uniform distribution over
trees as the number of vertices approaches infinity. The first paragraph of [Ald90a] states that the star graph
is much more favored when sampling from Kn. While not truly random over all trees, this approach is useful
in modeling fluid dynamics [Dux+04] and remains an aesthetically pleasing way to generate a maze.

2

3 Prüfer Codes

We now formalize the problem and discuss methods to solve it. Let G = (V,E) be an undirected connected
graph with vertex set V and edge set E. A spanning tree S ⊆ E is a subset of the edges forming a tree
that contains all vertices in V . Let T be the set of all spanning trees on G. Our goal is to create a random
function f : G→ S such that the probability of generating any given spanning tree is 1/|T |.

How large can T be? ForKn, the complete graph on n vertices, Cayley [Cay89] calculates that |T | = nn−2.
For any graph, we can calculate it using Kirchhoff’s Matrix-Tree Theorem, which states that |T | can be
computed by finding any cofactor of the graph’s Laplacian matrix.

Theorem 3.1 (Cayley’s Formula). For every n > 0, the number of tress on n labeled vertices is nn−2.

Theorem 3.2 (Matrix-Tree Theorem). For an undirected graph G with spanning trees T , |T | = detL
(ii)
G

for any i where LG denotes the Laplacian of G and L
(ii)
G represents the (i, i) minor of LG.

We will prove Theorem 3.1 repeatedly, and we defer the proof of Theorem 3.2 to later. These results
prove that the number of possible spanning trees on a graph can be intractably large, which makes it com-
putationally infeasible to generate the full set of spanning trees and pick one at random. Instead, we will
aim to generate a sample stochastically, i.e. to construct a random process that samples from the space of
all spanning trees with uniform probability without explicitly enumerating them all.

One such method is a Prüfer code. The philosophy of Prüfer codes is to encode each tree of G into a unique
sequence of numbers, then devise an algorithm to efficiently generate random encodings. An encoding is
given by Prüfer [Prü18], who describes polynomial time procedures for encoding a tree on n vertices as a
sequence of n − 2 vertices. At a high level, the sequence iteratively removes leaves and writes down their
neighbors until two vertices remain.

Input: A labeled tree T with vertices {1, 2, . . . , n}
Output: The Prüfer sequence P of length n− 2
P ← an empty array of size n− 2
T ′ ← a copy of T
V ′ ← the set of vertices in T ′

adj ← adjacency lists representing T ′

for i← 1 to n− 2 do
leaf vertices← ∅
for v ∈ V ′ do

if |adj[v]| = 1 then
Add v to leaf vertices

end

end
v ← min(leaf vertices)
u← the only element in adj[v]
P [i]← u
Remove v from V ′

Remove v from adj[u]
Remove adj[v] entirely

end
return P

Algorithm 1: Converting a tree to a Prüfer sequence

The process for converting a code back to a tree involves adding edges back iteratively; the encoding proce-
dure removes leaves from the outside in while the decoding grows them from the inside out.

3

Input: A Prüfer sequence a[1], a[2], . . . , a[n]
Output: Tree T with n+ 2 nodes
n← length[a]
T ← a graph with n+ 2 isolated nodes, numbered 1 to n+ 2
degree← an array of integers
// Initialize an empty tree

for each node i in T do
degree[i]← 1

end
for each value i in a do

degree[i]← degree[i] + 1
end
// Build the tree up from the sequence

for each value i in a do
for each node j in T do

if degree[j] = 1 then
Insert edge(i, j) into T
degree[i]← degree[i]− 1
degree[j]← degree[j]− 1
break

end

end

end
// Add the last two vertices

u← v ← 0
for each node i in T do

if degree[i] = 1 then
if u = 0 then

u← i
end
else

v ← i
break

end

end

end
Insert edge(u, v) into T
degree[u]← degree[u]− 1
degree[v]← degree[v]− 1
return T

Algorithm 2: Decoding a Prüfer code into a tree

Any sequence of n− 2 integers in {1, 2, ..., n} is a Prüfer code for a unique tree on n vertices. This directly
gives a polynomial time algorithm for generating a random tree on n vertices: assign each vertex a label,
randomly generate n− 2 integers, construct the tree. The decoding sequence naively takes O(n2) time, but
we conjecture it is possible to optimize using combinations of arrays and linked lists. A glaring limitation of
this method is that it samples a spanning tree on Kn and cannot be restricted to a particular graph or edge
set. We will turn our attention to specific graphs in the next section.

We can also use the uniqueness of Prüfer codes to prove Theorem 3.1. There is a clear bijection between
codes of size n−2 and labeled trees on n vertices. Since there are precisely nn−2 such codes, we can conclude
that the number of labeled trees on n vertices is also nn−2.

4

4 Random Walks

While Prüfer codes are a straightforward technique to sample a uniform spanning tree on the complete graph
Kn, they aren’t helpful when we attempt to sample from a fixed undirected graph G. Thus we turn our
attention to a much more powerful and theoretically popular technique: sampling a spanning tree via a
random walk on G. This walk can be represented as a Markov chain, which unlocks the machinery used to
study Markov chains and allows us to find efficient solutions to the spanning tree problem.

The basic algorithm is found in numerous notes and papers, but the simplest description of the walk is by
Broder [Bro89]:

1. Simulate a simple random walk on G starting at an arbitrary vertex s until every vertex is visited. For
each vertex i ∈ V − s collect the edge {j, i} that corresponds to the first entrance to vertex i. Let T
be this collection of edges.

2. Output the set T .

We will study the formulation given by Aldous in [Ald90b], discovered independently in the same year as
Broder. Formally, let G be an undirected connected graph on n vertices. We define a random walk as a
discrete Markov chain where each vertex is a state and the transition matrix P is defined as

P (u, v) =

{
1/deg(u) if (u, v) is an edge

0 otherwise

We begin a random walk on an arbitrary vertex v0, denoted as (v0; j ≥ 0).Then, for each vertex u let Tu be
the first ”hitting time” of u:

Tu = min{i ≥ 0 : vi = u}

Then, we define our spanning tree to consist of the n− 1 edges that ”discover” a new vertex.

TG = (vTv−1, vTv
); v ̸= v0

The cover time C of the walk is the time taken to visit all vertices.

C = max
v

Tv

It is clear why this walk produces a spanning tree - each vertex has an edge connected to it, and no cycles are
created because that would require adding an edge between two vertices that have already been discovered,
creating a contradiction. However, it is also true that this produces a uniform random spanning tree on G.

It is also clear that the running time of the algorithm is C. The walk is proven in [Ale+79] to have expected
cover time O(n3), and for most graphs achieves O(n log n). These are due to connections between the
structure of G and the mixing time of the Markov chain, which are discussed briefly in [Bro89]. The Aldous,
Broder, and similar formulations are treated as a family of random spanning tree algorithms called cover-time
algorithms.

5

4.1 Proof of Aldous-Broder

We now prove that the Aldous-Broder algorithm produces a uniform spanning tree over G. Our strategy is:

1. Create a set S of rooted spanning trees on G.

2. Define a Markov Chain on S and connect it with the algorithm’s walk.

3. Show that the chain on S has a uniform stationary distribution that is also its limiting distribution.

4. Extend to unrooted trees.

A rooted tree is a pair (T, v) of a tree T and a vertex v in the tree that is considered the root of the tree.
There are no modifications to the tree nor are we assigning directions to edges; this is simply defined for
analysis. Let S be the set of all rooted spanning trees on G. Since every unrooted tree shows up exactly
n times in S with different roots, sampling uniformly from S is equivalent to sampling a random spanning
tree.

We now define Si as the spanning tree generated by taking the random walk and only considering steps
of the random walk at time i and after:

Tu = min{j ≥ i : vj = u}

We consider Si to be rooted at its first vertex, i.e. the vertex visited in the original walk at time i. Considering
each Si a state, we see that the Si’s form a Markov chain over S. Then we consider the reverse transition
probabilities Q of Si:

Q(t, t′) = P (S−1 = t′|S0 = t)

Let deg(t) be the degree of the root vertex of a tree t. Then we get two consequences:

• Given t, there are exactly deg(t) trees t′ such that Q(t, t′) = 1/ deg(t), and Q(t, t′) = 0 for all other
trees t′.

• Given t′, there are exactly deg(t′) trees t such that Q(t, t′) = 1/deg(t), and Q(t, t′) = 0 for all other
trees t.

This means that for a fixed tree t′, ∑
t

deg(t)Q(t, t′) = deg(t′)

It can be shown that this implies the stationary distribution of the Markov chain on S is proportional to
each tree’s root degree deg(t). Furthermore, it is clear that this chain is irreducible as we can reach any t
from some other t′ by taking the path to the root vertex and constructing a depth-first search which leads
to t.

Since the the chain on S has stationary distribution equivalent to deg(t), and each unrooted spanning tree
shows up with every vertex as a root exactly once, we can ”marginalize” the root and we get that the
algorithm samples each unrooted spanning tree uniformly.

The use of ”reverse transition probabilities” is a brief window into a long line of work analyzing reversible
Markov chains and their applications to graph theory. The reader may survey Aldous’ work for generalized
results and another proof of Theorem 3.1.

6

4.2 Wilson’s Algorithm

It turns out that the Aldous-Broder is the most straightforward of the walk-based algorithms but not the
fastest. In fact, Wilson [Wil96] gives a result which is never slower than Aldous-Broder, and faster in many
cases. Yuval Wigderson gives a nice formulation, which we restate. Given G and a root vertex r, we define
a growing sequence of rooted trees Ti as follos:

1. Set T0 to be {r}.

2. If Ti is a spanning tree on G, stop and output. Otherwise, pick a random vertex v not in Ti and run a
random walk from v until a vertex in Ti is hit. Erase loops in the path from v to Ti, then set Ti+1 to
be Ti ∪ v.

This algorithm works for weighted or directed graphs as well, and produces the analog of a uniform
random spanning tree in those settings. We skip the proof, but note that the running time is improved
from the cover time to the mean hitting time of the graph.

5 Unexplored Directions

• An alternate method similar to Prüfer codes is given in [CDN89]. The authors assign each spanning
tree a ranking within the set of all spanning trees, then describe an O(n3) algorithm for converting
between a rank and a spanning tree on G. Counting the number possible spanning trees then generating
a random rank yields an O(n3) method for sampling from spanning trees.

• It can also be observed that spanning trees form the bases of a matroid on G, and thus we can use
machinery created to sample from bases of a matroid to achieve the goal. There is active work at
the University of Washington being done in this area; the reader may survey [Sch22] and its listed
references if interested.

• The proof of Theorem 3.2 hinges on the fact that for any edge e, if G− e is the graph without e and
G · e is the graph with e contracted, the number of spanning trees on G is the sum of the trees on
G− e and G · e. This implies a simple algorithm by Guénoche in [Gen83] that repeatedly deletes and
contracts edges until a spanning tree is created. It can been shown that this algorithm runs in O(n5).

7

6 Deferred Proof of Kirchhoff’s Theorem

We prove Theorem 3.2 by induction, restating the proof given by Moore on page 654 of [Moo11]. The base
case is a graph with a single vertex and no edges. The minor of its Laplacian will be the 0× 0 matrix, which
has determinant 1, so the result holds. Assume that the result holds for graphs with less vertices or edges.
For the inductive step, choose a vertex i and suppose that G has two or more vertices. If i has no edges, G is
disconnected and no spanning trees exist; the determinant of the Laplacian will be zero. So we can assume
that i is connected to another vertex j via an edge (i, j) which we call e.

We consider two modifications to G: deleting e to make G− e, and contracting the edge to merge i and
j into a single vertex, making G · e. We observe (skipping a proof) that the number of spanning trees on G
is the sum of the trees on G− e and G · e. Now reorder the vertices of G such that i and j are the first two,
and we can write the Laplacian of G as the following:

LG =


di −1 rTi

−1 dj rTj

ri rj L′


Here ri and rj are (n − 2)-dimensional column vectors describing the connections between i and j and the
other n− 2 vertices, and L′ is the (n− 2)-dimensional minor describing the rest of the graph. We can write
the Laplacians of G− e and G · e as

LG−e =


di − 1 0 rTi

0 dj − 1 rTj

ri rj L′

 , LG·e =

 di + dj − 2 rTi + rTj

ri + rj L′


To finish the induction, we want to show that

detL
(ii)
G = detL

(ii)
G−e + detL

(jj)
G·e

which corresponds to

det

 dj rTj

rj L′

 = det

 dj − 1 rTj

rj L′

+ detL′

But this follows from the fact that the determinant of a matrix can be written as a linear combination of its
cofactors, i.e., the determinants of its minors. Specifically, for any A we have

detA =

n∑
j=1

(−1)jA1,j detA
(1,j)

Thus if two matrices differ only in their (1, 1) entry, with A1,1 = B1,1 + 1 and Aij = Bij for all other i, j,
their determinants differ by the determinant of their (1, 1) minor, detA = detB + detA(1,1). Applying this

to L
(ii)
G and L

(ii)
G−e yields the above equation and completes the proof.

This result is often used to prove Theorem 3.1. The Laplacian of Kn looks like:
n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1


which has determinant nn−2 for any (i, i)-minor.

8

References

[Ald90a] David J. Aldous. “A Random Tree Model Associated with Random Graphs”. In: Random Struc-
tures and Algorithms 1.4 (1990), pp. 383–402. doi: 10.1002/RSA.3240010402.

[Ald90b] David J. Aldous. “The Random Walk Construction of Uniform Spanning Trees and Uniform
Labelled Trees”. In: SIAM Journal on Discrete Mathematics 3.4 (1990), pp. 450–465. doi: 10.
1137/0403039.

[Ale+79] R. Aleliunas et al. “Random walks, universal traversal sequences, and the complexity of maze
traversal”. In: Proc. 20th IEEE Symp. Found. Comp. Sci. 1979, pp. 218–233.

[Bro89] A. Broder. “Generating random spanning trees”. In: Proc. 30’th IEEE Symp. Found. Comp. Sci.
1989, pp. 442–447.

[Cay89] A. Cayley. “A theorem on trees”. In: Quarterly Journal of Pure and Applied Mathematics 23
(1889), pp. 376–378.

[CDN89] Charles J. Colbourn, Robert P.J. Day, and Louis D. Nel. “Unranking and ranking spanning trees
of a graph”. English (US). In: Journal of Algorithms 10.2 (June 1989). Funding Information:
Thanks to Wendy Myrvold and Bill Pulleyblank for helpful discussions about this research. The
research of the first author is supported by NSERC Canada under Grant AO579., pp. 271–286.
issn: 0196-6774. doi: 10.1016/0196-6774(89)90016-3.

[Dux+04] P. M. Duxbury et al. “Network Algorithms and Critical Manifolds in Disordered Systems”.
In: Computer Simulation Studies in Condensed-Matter Physics XVI. Ed. by David P. Landau,
Steven P. Lewis, and Heinz-Bernd Schüttler. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 181–194. isbn: 978-3-642-59293-5.

[Gen83] A. Genoche. “Random Spanning Tree”. In: J. Algorithms 4 (1983), pp. 214–220.

[Gol19] Christina Goldschmidt. Random minimum spanning trees. Mathematical Institute, University of
Oxford. Retrieved 2019-09-13. 2019.

[Moo11] Cristopher Moore. The nature of computation. OCLC 180753706. Oxford, England New York:
Oxford University Press, 2011. isbn: 978-0-19-923321-2.

[Prü18] Heinz Prüfer. “Neuer Beweis eines Satzes über Permutationen”. In: Archiv der Mathematik und
Physik 27 (1918), pp. 742–744.

[Sch22] Tselil Schramm. Lecture 5: Approximate Sampling of Spanning Trees via Matroid Basis Exchange.
https://web.stanford.edu/class/stats221/. Lecture notes for STATS 221: Random Pro-
cesses on Graphs and Lattices, Stanford University, January 19. 2022.

[Wil96] David Bruce Wilson. “Generating random spanning trees more quickly than the cover time”.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC
’96. Philadelphia, Pennsylvania, USA: Association for Computing Machinery, 1996, pp. 296–303.
isbn: 0897917855. doi: 10.1145/237814.237880. url: https://doi.org/10.1145/237814.
237880.

9

https://doi.org/10.1002/RSA.3240010402
https://doi.org/10.1137/0403039
https://doi.org/10.1137/0403039
https://doi.org/10.1016/0196-6774(89)90016-3
https://web.stanford.edu/class/stats221/
https://doi.org/10.1145/237814.237880
https://doi.org/10.1145/237814.237880
https://doi.org/10.1145/237814.237880

	Introduction
	Random Edge-Weight MST
	Prüfer Codes
	Random Walks
	Proof of Aldous-Broder
	Wilson's Algorithm

	Unexplored Directions
	Deferred Proof of Kirchhoff's Theorem

