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1 Introduction

In the world of big data, there is an ever-present need to run algorithms on data that does not fit in
a traditional computer’s memory. Millions of data points generated concurrently by database systems,
networks, need to be processed in real time using limited memory and time. This has led to the development
of streaming and sketching algorithms, which accomplish a task approximately on some large dataset while
saving on space, time, or both. There are many subfields that contribute results in this area, three main
ones are:

• Streaming algorithms, which receive a data stream and compute information with limited space

• Sketching algorithms, which compress large streams into small ”sketches” that preserve information

• Sublinear algorithms, which estimate properties of a stream by viewing a small fraction of the data

Algorithms of this nature are often randomized approximation algorithms, so there are many cases where a
possible solution to a problem is the most obvious. Here, we examine some results where algorithms that
are extremely simple to describe can exhibit powerful properties. We also look at some common tricks for
streaming algorithms, such as averaging copies of them to improve accuracy.

We can now look at a formal model. A stream is a collection of elements x1, . . . , xn that we aim to compute
some function f(x) on. The most common (and useful) model is that the elements are integers or real
numbers, and the stream is far, far larger than the space available to the algorithm. This resembles many
real-world scenarios where we may want to compute a statistic on an event in real-time when the event
occurs too fast to process naively. For example, credit card companies should be able to detect within a
fraction of a second if a transaction is potentially fraudulent. Another example is healthcare devices that
take many measurements and must elicit a proper signal from the noise.

We will settle for outputting an estimate f̃(x) on the stream. A nice property is that we would like guarantees
on how the error behaves, specifically we would like to provide parameters ε and δ which represent the margin
of error and the failure probability, respectively. We follow a relative error model, which means we design
algorithms such that

P
(
(1− ε)f(x) < f̃(x) < (1 + ε)f(x)

)
> 1− δ

Generally, we will measure the space complexity of computing f̃(x), which will usually depend on ε, δ, and
sometimes n. These notes are adapted from the notes of Jelani Nelson, Thomas Rothvoss, and others.
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2 Morris Counting Algorithm

A great problem to start with is counting. Suppose you are running server analytics for Amazon and you
want to count how many requests some servers get per day. Of course, there could be many servers that get
millions of requests a day, so keeping an exact counter for every server becomes a hassle. Additionally, you
don’t need the exact count for each server – an estimate within 1-2% would suffice. Formally, we want to
design a data structure that maintains a single integer n and supports two operations:

• increment(): increment n by 1

• query: output (an estimate of) n

The naive solution is to store a counter using log n bits of memory, and it can be shown that any method for
outputting n exactly must take at least log n bits. However, we can use much less space with an estimate,
i.e. query() will output an estimate ñ that satisfies

P(|ñ− n| > εn) < δ

for 0 < ε, δ < 1 that are inputs to the algorithm. We can think of ε as the relative error we want to achieve,
and δ as the probability of exceeding that error (i.e. failing to estimate correctly.)
An algorithm given by Morris [Mor78] accomplishes this task and works as follows:

1. Initialize X ← 0.

2. When increment() is called, increment X with probability 1
2X

.

3. When query() is called, output 2X − 1.

Intuitively, X is approximating log n. We can now analyze the error of Morris’ algorithm.

Claim. Let Xn denote the value of X after n calls to increment(). Then, E[2Xn ] = n+ 1.
Proof. By induction on n, where the algorithm obviously satisfies the base case of n = 0. Then,

E[2Xn ] =

∞∑
j=0

E[2Xn | Xn−1 = j] · P(Xn−1 = j)

=

∞∑
j=0

(
2j−1

(
1− 1

2j−1

)
+

1

2j−1
· 2j
)
· P(Xn−1 = j)

=

∞∑
j=0

(2j−1 + 1) · P(Xn−1 = j)

=

∞∑
j=0

2j−1 · P(Xn−1 = j) +

∞∑
j=0

P(Xn−1 = j)

= E[2Xn−1 ] +

∞∑
j=0

P(Xn−1 = j)

= ((n− 1) + 1) + 1

= n+ 1

This makes it clear why query() outputs 2X − 1, as we get an unbiased estimator of n.
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Now we want to analyze the variance (that is, examine whether the algorithm achieves ε-error). We first
need to bound the variance of our estimator ñ = 2X − 1:

Var[2X − 1] = E[(2Xn − 1)2]− n2

= E[22Xn ] + 1− 2E[2Xn ]− n2

Now we claim E[22Xn ] = 3
2n(n+ 1) + 1 using induction:

E[22Xn ] =

∞∑
i=0

22i · P(Xn = i)

=
∑
i

22i
(

1

2i−1
· P(Xn−1 = i− 1) +

(
1− 1

2i

)
· P(Xn−1 = i)

)
=
∑
i

2i+1 · P(Xn−1 = i− 1) +
∑
i

22i · P(Xn−1 = i)−
∑
i

2i · P(Xn−1 = i)

= 4E[2Xn−1 ] + E[22Xn−1 ]− E[2Xn−1 ]

= 3E[2Xn−1 ] + E[22Xn−1 ]

= 3n+ E[22Xn−1 ]

= 3n+
3

2
(n− 1)n+ 1

=
3n(n+ 1)

2
+ 1

This means Var[2X−1] = 1
2n

2− 1
2n−1 ≤ 1

2n
2. We bound the algorithm’s error with Chebyshev’s inequality:

P(|(2Xn − 1)− n| > εn) ≤ Var[2Xn − 1]

ε2n2

≤ 1

2
n2 · 1

ε2n2

=
1

2ε2

This is not particularly useful, as the failure probability is only < 1/2 when ε ≥ 1, in which case zero is a
valid estimate!

To reduce the variance of the algorithm, we instantiate s copies of the basic Morris algorithm and averaging
their outputs (sum them up and multiply by 1/s). This doesn’t change the expectation, but since variations
of random variables add, and multiplying a random variable by a constant c = 1/s causes the variance to
grow by c2, the error probability looks like:

P(|(2Xn − 1)− n| > εn) ≤ 1

2sε2
< δ

when s > 1/(2ε2δ) = Θ(1/ε2δ).
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Now we reduce the space complexity’s dependence on the failure probability δ from 1/δ to log(1/δ). Run t
copies of the extended Morris algorithm, each with failure probability δ = 1/3 so s = Θ(1/ε2). Then, we
output the median of the t copies. Observe that the expected number of copies that will succeed is 2t/3.
For the overall algorithm to fail via a bad median, half the copies or more need to fail, implying that the
algorithm deviates from its expectation by t/6. Define:

Xi =

{
1 if the ith copy of the extended Morris algorithm succeeds.

0 otherwise.

By the Chernoff bound:

P

(∑
i

Xi ≤
t

2

)
≤ P

(∣∣∣∣∣∑
i

Xi − E

[∑
i

Xi

]∣∣∣∣∣ ≥ t/6

)
≤ 2e−t/3 < δ

when t is Θ(log(1/δ)).

It remains to analyze the space complexity of the full algorithm, which is running st = Θ(log(1/δ)/ε2)
copies of a basic Morris counter. When any of the individual counters X reaches the value log(stn/δ), the
probability that it is incremented during any call to increment() is at most δ/(nst). Then, the probability
that it is incremented at all in the next n calls to increment() is at most δ/(st). By the union bound, with
probability 1 − δ, none of the st counters ever stores a value larger than log(stnδ). Thus, with probability
1− δ, the total space complexity is:

O(
1

ε2
log(1/δ) log log(n/(εδ)))

If we fix a constant ε and δ, then the total space complexity is O(log log n) with constant probability. This
is an exponential boost compared to the naive method!

Two more recent results of note are:

• In [NY22], Nelson and Yu presented a modification to the algorithm which improves the dependence
of the space complexity on δ from log(1/δ) to log log(1/δ). They further show that this is optimal up
to small factors.

• In [Ade+22], it is shown that there is no amortized benefit when storing multiple counters. In other
words, k counters cannot be maintained with asymptotically less memory than k times the space used
by a single counter.

We believe these two results essentially resolve approximate counting, although it would be exciting to see
further development regarding this problem.
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3 Distinct Elements

Here we attack the distinct elements problem with a toolkit similar to the previous section. The distinct
elements problem, or the F0 problem, deals with a stream of integers x1, . . . , xn ∈ [n] and asks us to output
the number of distinct elements in the stream. We want to store a small amount of information that will
allow us to approximate this value. Similarly to above, if t is the true number of distinct elements, we want
to output an estimate t̃ such that P(|t̃− t| > εt) < δ. The following algorithm is given in [FM85] by Flalojet
and Martin:

1. Initialize a hash function h : [n]→ [0, 1] and a value X ←∞.

2. For each item in the stream xi, X = min(X,h(xi)).

3. Output 1/X − 1.

Note that the algorithm is highly idealized since storing a truly random hash function h takes Ω(n) bits and
all computations of the algorithm are carried out with infinite-precision real numbers. The intuition is that
m is the minimum of t i.i.d. Unif(0, 1) random variables.
Claim. E[X] = 1

t+1 .

Proof. We use the fact that for a random variable with only non-negative values, E[X] =
∫∞
0

P(X > u)du.
Suppose there are items x1, . . . , xn in the stream corresponding to unique integers y1, . . . , yn.

E[X] =

∫ ∞

0

P(X > u)du

=

∫ ∞

0

P(∀xi, h(xi) > u)du

=

∫ ∞

0

t∏
j=0

P(h(yj) > u)du

=

∫ 1

0

(1− u)tdu

=
1

t+ 1

Claim. Var[X] ≤ 1
(t+1)2 .

Proof. We analyze E[X2].

E[X2] =

∫ 1

0

P(X2 > u)du

=

∫ 1

0

P(X >
√
u)du

=

∫ 1

0

(1−
√
u)tdu

= 2

∫ 1

0

λt(1− λ)dλ (substitution λ = 1−
√
u)

=
2

(t+ 1)(t+ 2)

Then Var[X] = E[X2]− E[X]2 = t
(t+1)2(t+2) ≤

1
(t+1)2 .
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Just as before, we will average s = 1/ε2δ copies of the basic FM algorithm together. If Z is the random
variable describing this variable, we have E[Z] = 1

t+1 and Var[Z] ≤ 1
s(t+1)2 . Then, by Chebyshev’s:

P(|Z − 1

t+ 1
| > ε

t+ 1
) ≤ (t+ 1)2

ε2
1

s(t+ 1)2
= δ

To complete the analysis, we show that the estimation also satisfies error bounds. Since

1

(1± ε)
1

t+1

− 1 = (1±O(ε))(t+ 1)− 1 = (1±O(ε))t±O(ε)

we get that P
(∣∣( 1

Z − 1
)
− t
∣∣ > O(ε)t

)
< δ.

Finally, following the pattern from the Morris algorithm, we will take the median of q = 36 ln(2/δ) copies of
the extended FM algorithm each with failure probability 1/3. If t̂ is this estimator, then:

Claim. P(|t̂− t| > εt) < δ.
Proof. Let

Yi =

{
1 if the ith copy of the extended FM algorithm succeeds.

0 otherwise.

and let Y =
∑

Yi. We have E[Y ] ≥ 2q/3 as each copy had failure probability 1/3. We are bounding the
probability that the median fails, i.e. at least half of the copies have Yi = 0, or in other words that Y ≤ q/2.
Then we get that

P(Y ≤ q/2) ≤ P(|Y − E[Y ]| > 1

4
E[Y ])

By Chernoff, this is at most

2e−
( 1

4 )
2
2s/3

3 < δ

which completes the analysis.

The final space required, ignoring the cost of storing a perfect hash function h, is the space required to store
O(log(1/δ)/ε2) real numbers (each copy of the basic FM stores a single real number, the minimum hash
seen.)

It should be noted that the FM algorithm presented here is impractical and relies on access to a hash function
that may not always be available. Instead, [Bar+02] gives a strategy that stores k small hash values instead
of the minimum and gives the same error guarantees with a much weaker restriction on the hash function.
Furthermore, HyperLogLog [Fla+07] is the industry standard for this problem, as it can estimate values
in the billions with an error of 2% using < 2 kilobytes of space. It extends the FM algorithm to use a
Bloom-Filter-esque structure, and is widely used by Google for distinct element estimation.
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4 Approximate Median

Another problem is approximating the median element of a data stream. The generalization of this problem,
which has to do with approximating any quantile of a stream, has been studied in-depth by the KLL sketch,
GK sketch, and more. However, in our quest for extremely simple algorithms, we find the following procedure
for finding an relative ε-approximation of the median:

1. Sample t values (with replacement) from the stream S = x1, . . . , xn.

2. Return the median of the sample.

Claim. If t ≥ 7
ε2 log

2
δ , then the algorithm outputs a y such that |rank(y)−n| ≤ εn with probability ≥ 1−δ.

Proof. Partition S into three groups:

• SL = {x ∈ S : rank(x) ≤ n
2 − εn}

• SM = {x ∈ S : n
2 − εn < rank(x) < n

2 + εn}

• SU = {x ∈ S : rank(x) ≥ n
2 + εn}

Observe that if less than t/2 elements from each of SL and SU are in the sample, then the median of the
sample is in SM , meaning it is ε-approximate to the true median. Let Xi = 1 if the i-th sample is in SL and
0 otherwise. Let X =

∑
i Xi. By Chernoff, if t > 7

ε2 log
2
δ ,

P(X ≥ t/2) ≤ P(X ≥ (1 + ε)E[X]) ≤ e−ε2(1/2−ε)t/3 ≤ δ/2

where the first inequality follows from E[X] = t(1/2− ε) and (1 + ε)E[X] = t(1 + ε)(1/2− ε) ≤ t/2.

Similarly, SU contributes ≥ t/2 elements with probability ≤ δ/2. By union bound, the algorithm returns a
ε-approximate median with probability 1− δ.

Another algorithm by [MMS14] accomplishes an approximate median using one unit of memory:

1. Initialize x = 0

2. for each si in S do

• if si > x then x = x+ 1

• else if si < x then x = x− 1

3. Output x.

This can be generalized to approximate any quantile described as a fraction h/k:

1. Initialize x = 0

2. for each si in S do

• if si > x then x = x+ 1 with probability 1− h/k

• else if si < x then x = x− 1 with probability h/k

3. Output x.

While we will not analyze the algorithms, they squeeze remarkable properties out of the smallest amount of
space possible. The provided reference improves their performance while space usage remains O(1).
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5 Reservoir Sampling

Many algorithms in streaming (including some discussed above) rely on taking a sample of size k from a
stream of size n, without necessarily knowing n. Reservoir sampling [Vit85] and its variants give efficient
ways to do this. The simplest form of reservoir sampling on a stream x1, . . . , xn is as follows:

1. Initialize an array R containing the first k items of the stream x1, . . . , xk.

2. For each item xi, generate a random number j ∈ {1, . . . , i}. If j is in {1, . . . , k}, set R[j] to xi.

3. When the stream is finished, return the items in R.

Claim. Reservoir sampling returns a uniform random subset from the stream.
Proof. By induction on the size of the stream n. If n = k, then the algorithm returns the only sample
possible. Our inductive hypothesis is that in a stream of n elements, any item is in the n’th reservoir Rn

with probability k/n. For the n+1’th element xn+1, the probability that it is included in the reservoir Rn+1

is k/n+ 1. For any other element xi already in the reservoir,

P(xi ∈ Rn+1) = P(xi ∈ Rn+1|xi ∈ Rn) · P(xi ∈ Rn)

= (1− 1

n+ 1
) · k

n

=
k

n+ 1

Thus, after item xn+1 is inserted, every item has a k/n + 1 chance of being in the reservoir. By induction,
the claim holds.
It may also be useful to sample with replacement. For this, [Par+04] provides a simple adjustment to the
scheme above:

1. Initialize reservoir R as empty.

2. For each item xi, flip k coins where each has probability of heads 1/i. For each heads, remove a
uniform random item from R. After all coins have been flipped, add copies of xi into R equal to the
total number of heads.

3. When the stream is finished, return the items in R.

The proof is similar to above, the reader may examine [Par+04] for more.

Reservoir sampling is an interesting technique from a mathematical, theoretical, and practical perspective.
Its ideas have been connected to several other sampling techniques from probability theory, most notably the
Fisher-Yates shuffle for drawing subsets of cards from an infinite deck. A natural extension of the problem
is weighted random sampling, where each item is given a weight corresponding to the probability with which
it should be included in the sample. This is a key component of introducing fairness in machine learning
algorithms, where training data usually comes in a stream but must be sampled with precision. Because
of its importance in streaming algorithms, there have been many improvements to reservoir sampling that
make it suitable for practical use.
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6 Johnson-Lindenstrauss Lemma

The JL Lemma is one of the most fundamental results in approximations algorithms, with its applications
spanning across fields. It shows that n points in high dimensional Euclidean space can be mapped into
an O(log n/ε2)-dimensional space such that the distance between any two points only changes by at most
(1± ε). Not only does such a map exist, but one can easily be found in randomized polynomial time.
Theorem. For 0 < ε < 1 and any set of points x1, . . . , xn ∈ Rd there is a linear map T : Rd → Rk with
k = Θ( logn

ε2 ) such that for all i, j ∈ [n]:

(1− ε)||xi − xj ||2 ≤ ||T (xi)− T (xj)||2 ≤ (1 + ε)||xi − xj ||2

Before we can prove the theorem, we need two facts:
Fact 1. Let α, β ∈ R and let g1 ∼ N (µ1, σ

2
1) and g2 ∼ N (µ2, σ

2
2) be two independent Gaussian random

variables. Then αg1 + βg2 has distribution N (αµ1 + βµ2, α
2σ2

1 + βσ2
2).

Fact 2. Let X = (X1, . . . , Xd) be a d-dimensional vector with all coordinates drawn independently from
N (0, 1) and let 0 < ε < 1. Then,

P(|||X||22 − d| ≥ εd) ≤ 2 exp(−dε2

8
)

We skip the proofs of these facts, but the intuition is that the sum of independent Gaussians is Gaussian
and that Gaussians are strongly concentrated around their mean. Now we are ready to prove the theorem.

We define our map T as T (x) = Ax where A ∈ Rk×d is a matrix where all entries are chosen independently
as Aij ∼ N (0, 1

k ). We want to show that T works with high probability for an appropriate choice of k, so
we start by examining how Ax behaves for a fixed vector x ∈ Rd.

Claim. For a fixed x ∈ Rd, Ax is a random vector where each coordinate is drawn independently from

N (0,
||x||22
k ).

Proof. The i-th coordinate of Ax is

(Ax)i =

k∑
j=1

Aijxj ∼ N (0,
||x||22
k

)

which is from Fact 1. The independence follows from the fact that the rows of A are independent. Next,
for any x ∈ Rd, we have

E[||Ax||22] =
k∑

i=1

E[(Ax)2i ] = k · ||x||
2
2

k
= ||x||22

which means that our map Ax maintains the length of x in expectation. Next, we show that it maintains
the length of x with high probability.

Claim. For any x ∈ Rd, P(|||Ax||2 − ||x||2| > ε||x||2) ≤ exp(−ε2k/8).
Proof. The claim is invariant under scaling x, so we can assume ||x||2 = 1. Then,

P(1− ε ≤ ||Ax||2 ≤ 1 + ε) = P((1− ε)2 ≤ ||Ax||22 ≤ (1 + ε)2)

≥ P(1− ε ≤ ||Ax||22 ≤ 1 + ε)

≥ 1− 2 exp(−ε2k

8
)

The first inequality follows from the fact that (1 + ε)2 ≥ 1 + ε and (1 − ε)2 ≤ 1 − ε for all 0 ≤ ε ≤ 1. The
second inequality follows from the fact that Ax is a vector with entries drawn from N (0, 1), then scaled by
1/
√
k, so we can apply Fact 2.
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Now we are ready to prove the theorem. We apply a union bound on all difference vectors xi − xj between
points and the claim above:

P(∃i ̸= j : | ||Axi −Axj ||2
||xi − xj ||2

− 1| > ε) ≤
∑

1≤i<j≤n

P(
||A(xi − xj)||2
||xi − xj ||2

> ε)

≤ n2 · 2 exp(ε2k/8)

=
1

2n

when we set k = 8 ln(4n3)/ε2.

We can redo the projection O(n) times to arbitrarily reduce the failure probability. There are many such
matrices A that give a projection with the same property. A quite surprising result from [Ach03] is that a
matrix with boolean entries drawn from {−1, 1} works as well!

The applications of JL transforms span:

• Dimensionality reduction for nearest neighbor search

• Compressed sensing

• Machine learning preprocessing

• Graph sparsification

and more.
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